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Optimization Strategies in Ion
Chromatography

Tomislav Bolanča and Štefica Cerjan-Stefanović

Laboratory of Analytical Chemistry, University of Zagreb,

Zagreb, Croatia

Abstract: The ion chromatographer is often concerned with the separation of complex

mixtures with a variable behavior of their components, which makes good resolution

and reasonable analysis time sometimes extremely difficult. Several optimization strat-

egies have been proposed to solve this problem. The most reliable and less time

consuming strategies apply resolution criteria based on theoretical or empirical

retention models to describe the retention of particular components. This review

focuses on optimization strategies in ion chromatography with a detailed description

of the ion chromatographic retention model, objective functions, multi criteria

decision making, and peak modeling.

Keywords: Ion chromatography, Optimization, Retention modeling, Objective

function, Peak modeling

INTRODUCTION

Ion chromatography (IC) is often regarded as a mature technique, one with

thousands of practitioners successfully solving problems in a broad variety

of applications. However, because of the difficulty and complexity of

experimental optimization, few workers in practice are able to approach

the best possible performance of a separation. The usual guidance

available concerning the overall quality of a separation is the expectation

based on past performance in the same workgroup rather than any real
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(or virtual) knowledge of what is actually possible. If there is a business

expectation to find reasonable separation conditions within a couple of

days, then there are only a dozen or so experiments possible before

time runs out.

Improving IC separations by experimental one-at-a-time tweaking of one

or two parameters, without regard to parameter interactions or to the influ-

ences of other easily adjusted parameters, is commonly practiced. Such

efforts, performed serially on several parameters, may provide improvement

in some respect, but additional refinement of the same parameters will often

continue, leading to even better performance. Optimization, by contrast,

finds the unique combination of values of the adjustable parameters corre-

sponding to the best performance possible for a particular set of requirements.

By definition, there is no means to further improve an optimized separation

unless the requirements or limits are changed, or another parameter is

declared adjustable and is added to the problem. Thus, the result of an optim-

ization is totally dependent on the goals of the separation, the parameters

which are considered adjustable, and the limits or constraints placed on the

parameter values.

The reliability of an optimization procedure depends, however, on two

factors. First, the description of the retention behavior for all compounds

present in the mixture should be accurate enough. The retention of a

compound on an ion chromatographic column depends upon complex

interactions between solute, stationary phase, and mobile phase. The

ability to describe these interactions quantitatively will allow retention

behavior and resolution to be predicted. Second, the objective function

used to measure the separation of each chromatographic peak should be

sufficiently informative and the global separation of all peaks in the chro-

matogram should be reduced to a single numerical value. The objective

function should quantify, properly, the separation degree by weighting

the individual peak contributions, be sensitive to judge apparently

similar peak arrangements, and unambiguously indicate to the analyst

the optimum conditions offering the best separation. It is also critical to

select a robust optimum in the global optimization process which allows

a degree of flexibility and convenience in selecting the values of continu-

ously variable parameters (like flow rate and eluent concentration), but

then, performance can be compromised by the limited number of

choices. Since robustness of an optimum may vary with respect to the

individual parameters, multi criteria decision making optimization may

be acquired.

Typically, only the retention times of solutes are taken into account to

evaluate the global resolution. Alternatively, peak widths and asymmetries,

obtained by interpolation, are considered. However, the inaccuracy in predict-

ing the peak shape with changes in mobile phase composition can ruin an

optimization process, yielding unexpected overlaps, especially when

complex mixtures are analyzed.
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RETENTION MODELS

Recently, a wide range of retention models and their use in ion chromato-

graphy have been developed. If one of these models is applied, the retention

behavior of any solute can be predicted and computer-aided optimization of

the eluent composition can be performed.

Monoionic Eluents

The linear solvent strength model[1 – 3] predicts a linear relationship between

the logarithm of the capacity factor and the logarithm of the eluent con-

centration:

log k0A ¼ C1 �
x

y
log Ey�

m

� �
ð1Þ

where C1 is a constant, k0A is the capacity factor of the analyte, E represents the

eluent ion, y and x the eluent ion and analyte ion charges, respectively, m

denotes mobile phase. Equation (1) predicts that a plot of log k0 versus

log[Em
y2] is linear and has a slope equal to the negative of the ratio of the

charges on the analyte and eluent ion.

Deviation from theory has been observed in the systems with a more

complex composition of mobile phase. It is demonstrated that, with a simpli-

fied case when none of the eluting anions undergoes acid–base equilibrium,

the dependence between capacity factor and eluent concentration cannot be

transformed into a linear log–log form.[4] The dependencies may be even

more complex for the polyanionic analytes, as has been observed for

phosphate,[5 – 7] selenite,[4,8] and some anions of weak organic acids.[7,9]

Polyionic Eluents

The polyionic retention models can be divided into three groups: the dominant

equilibrium approach,[3] the competing ion ‘effective charge’ approach,[2,10]

and the dual (multiple) eluent species approach. These have been reviewed

for general application by Haddad et al.[11 – 13] generally, the most applicable

models are based on the multiple eluent species approach suggested by Jenke

and Pagenkopf.[14,15] Hirayama and Kuwamoto[8,16] modified Jenke’s method

by using the ‘elution system coefficient’ whereas Yamamoto et al.[17] intro-

duced the concept of an ‘inter-eluent separation factor’ into the Hoover’s

method. More recently, Jenke[18] modified his previously derived equations,

replacing the anion’s formal charge with its effective charge and using an

empirical relationship between the selectivity coefficient and an analyte’s

effective charge. The retention model described by Mongay et al.[9] has

been developed taking into account the presence of a polyprotic eluent and

monoanionic and dianionic sample ions. This approach considers that each
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species of eluent ion can displace each form of the analyte ions, leading to a

general equation that, at least in theory, can account for k0 variations as a

function of pH in the ion exchange process. The equation has been tested

with monoanionic analytes, in a simplified linearized form:

ln k0 ¼ ln P� j
Xn

i¼1

xi

i

� �
ln C ð2Þ

For dianionic analytes in the following form:

k0 ¼
P1

C
Pn

i¼1ð2xi0=iÞ
þ

P2

C
Pn

i¼1ðxi1=iÞ
ð3Þ

where P, P1, P2 are constants including selectivity coefficient, sample and

eluent protonation constants, pH, dead volume, resin dry mass and capacity;

j is the analyte charge, i, the eluent species charge, C, the total eluent concen-

tration, x, the contribution of eluent species to displacement of analyte ions.

For dianionic samples, these contributions are expressed by xi0 and xi1

according to the equilibria:

xi0A2� þ 2R� HE,R2 � Aþ 2HE� ð4Þ

xi1HA� þ
1

2
R2 � E,R� HAþ

1

2
E2� ð5Þ

Application of Eqs. (4) and (5) at different eluent concentrations allows the

determination of the contribution x of each exchange reaction and a global

selectivity coefficient defined for anions as:

E0 ¼
½R2A�

Q
½Hn�1Ei��

2xi0=i

½A2��
Q
½RiHn�iE�

2xi0=i
ð6Þ

E1 ¼
½RHA�

Q
½Hn�1Ei��

xi1=i

½HA��
Q
½RiHn�iE�

xi1=i
ð7Þ

The acceptable agreement between predicted and experimental dependencies

was achieved.[9] This approach was applied also to the separation of metals in

the form of their anionic complexes on an anion-exchange column[19] with the

aid of oxalate eluent.

Artificial Neural Networks Models

In the last decade, artificial neural networks (ANN) have found widespread

popularity amongst chromatographers. Many different networks based on

different concepts and purposes are currently known. For some of the ANN

methods, a twin in statistics exists. Typical examples of statistical overlap

are summarized[20] and it is generally concluded that much of the joint
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theory exists between statistics and ANN methodology. An ANN consists of a

large number of simple processing elements that are variously called neurons

or nodes. Each neuron is connected to other neurons by means of direct com-

munication links, each with an associated weight. The weights represent infor-

mation being used by the net to solve a problem. The neural network usually

has two or more layers of neurons in order to process non-linear signals.

Comparison of the prediction power between multi layer perceptron

(MLP) ANNs and mathematical modeling has been studied. It is pointed

out that similar prediction power was obtained with both models when the

number of data points is sufficiently large.[21] In a series of papers

devoted to separation of ions and metal complexes, it is demonstrated that

retention times predicted with MPL ANNs are better than those predicted

by mathematical models.[22 – 24] Furthermore, it is pointed out that MLP

ANN modeling does not provide any numerical values for physical par-

ameters. A detailed optimization procedure needed for development of an

MLP ANN retention model is described in Refs. [25,26]. It is demonstrated

that the optimized two-phase training, consisting of first and second order

algorithms, ensures faster training with a higher probability of avoiding

local minima.[26]

Among the MLP ANNs, the radial basis function (RBF) ANNs have also

been used for retention modeling in ion chromatography.[27] Radial basis artifi-

cial neural networks use kernels (basis functions) to represent the data (Fig. 1);

these kernels are placed into the input space using one of a variety of paradigms.

The kernels have a defined response to input data that varies according to the

distance of the data point from the kernel centre. The global responses of all

Figure 1. Diagrams illustrating the way in which data are represented and how

decision boundaries are formed (radial assignment) between two groups (B, A) in

two dimensions by radial basis function artificial neural network.
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kernels are then used to model the data space. The kernel with a simple math-

ematical function that is generally chosen is Gaussian in shape (Fig. 2). This

has a response that is a function of distance from the kernel centre. The

general form of the Gaussian is:

Output ¼ expð�x2=s2Þ ð8Þ

where s2 (standard deviation) controls the spread of the function, and x is the

Euclidean distance between the kernel centre and the vector of interest. If,

rather than the Euclidean distance, the Mahalanobis distance metric[28] is

used, the kernels become non-radially symmetric, elongated into ellipsoids.

Since the size of the kernel is determined by the variance of the (n-dimensional)

patterns, the size of the region represented by the RBF kernel is not fixed.

Kernels representing large diffusely distributed populations will have larger

variances and the kernels will have greater spatial spread (Fig. 2) than those

representing more compact, well defined populations. Like the more

commonly used MLP artificial neural networks, RBF networks comprise

three layers of nodes, but with the middle (hidden) layer being made up of

Gaussian or asymmetric kernels (Figs. 1 and 2). As in MLPs, the inputs to the

network are nodes that simply pass each of the input signals to the middle

layer kernels (hidden layer of neurons). The outputs of the kernels are fed to

the output layer, which is made up of ‘ordinary’ nodes with linear transfer

functions. As in the MLP, values of the output layer nodes correspond to ‘a pos-

teriori’ probability estimators.[29] It shows that developed RBF artificial neural

networks are fast and accurate retention modeling tools, with a small amount of

experimental data points needed for calculations.[27]

Figure 2. The Gaussian kernel functions with different values of standard deviation s

(radial spread).
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Gradient Elution Models

Gradient elution offers several advantages: total analysis time can be signifi-

cantly reduced, overall resolution of a mixture can be increased, peak shape

can be improved (less tailing), and effective sensitivity can be increased

because there is little variation in peak shape. More importantly, it provides

the maximum resolution per unit of time. In order to find appropriate

gradients, trial-and-error optimizations are frequently used, although they

are particularly slow and inefficient.

The application of ANNs for development of a gradient elution

retention model is described.[27,30,31] It is demonstrated that back propa-

gation ANNs can accurately model linear gradients if enough experimental

data are used for modeling. Significant reduction of an experimental data

set used for gradient elution modeling is obtained by using crossing

procedure form isocratic elution to gradient elution mode.[32] That model

is based on final (integral) retention times of solutes, tg, which is

described in terms of measurable properties (capacity factor, k, void time

of a column, t0):

Fðtg; k; t0Þ ¼ 0 ð9Þ

Upon the inclusion of the time-independent term k[c] (c denotes concen-

tration of eluent competing ion) within the time integral, one may easily

switch to the gradient elution result by allowing for the temporal

variation of c:

t0 ¼

ðtg�t0

0

dt

k½cðtÞ�
ð10Þ

k[c] can be assumed constant for each step and t0 can be approximated to:

t0 �
t1

k0;1
þ

t2 � t1

k1;2
þ � � � þ

ti � ti�1

k0;1
þ

tiþ1 � ti

ki;iþ1

¼ I0;1 þ Ii;iþ1 ¼ I0;iþ1 ð11Þ

kðcÞi;iþ1 ¼
k½cðtiÞ� þ k½cðtiþ1Þ�

2
ð12Þ

where I represents the approximate cumulative integral. The approximate

value of the cumulative integral is calculated stepwise; it is expected to

increase in due course of the integration procedure and it will eventually

exceed the fixed t0-value on the left-hand side of Eq. (11) at some tg-t0-
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value. At this point, tg can be easily calculated as:

tg ¼ t0 þ ti þ ðt0 � I0;iÞkðcÞi;iþ1 ð13Þ

The quality of prediction is evaluated by checking the uncertainty of the

model.[32]

SELECTION OF OPTIMAL CONDITIONS

Objective Function

To have an objective measure of any chromatogram quality, the character-

istics of the obtained separation must be translated in terms of a quantitative

measurement. These types of criteria have been named chromatographic

response functions (CRFs) in the field of chromatographic optimization and

objective functions in the broad scope of optimization literature. It has been

recognized[33] that an ideal chromatographic objective function has to fulfill

six fundamental requirements:

1. to have an effective means of comparison and differentiation of chroma-

togram quality;

2. to have an effective means of quantitative scaling of chromatogram

quality;

3. to serve effectively the aims of the chromatographer;

4. to be affected by the parameters controllable by the chromatographer and

not by the uncontrollable ones;

5. to show an understandable correlation with controllable parameters; and

6. to show lack of mathematical limitations or inconsistencies.

Many CRFs have been proposed and applied during the past decades for

HPLC optimization and method development, but none have fulfilled all the

necessary demands, so the need of really efficient chromatographic response

functions still remains. A list of CRFs is presented in Table 1 without the

pretense of being exhaustive.

Multi Criteria Decision Making

In all IC methods, however, the ruggedness of the proposed optimum should

be verified. In general, this step is performed, if it is ever done, after the

optimization, during method validation. If, at that stage, one finds that the

proposed method is not rugged, it may be necessary to start the whole optim-

ization and validation procedure once again. Some criteria that try to select a

rugged optimum were already developed.[44 – 49] Despite the good results

achieved by these criteria, they still require a multi criteria decision making

(MCDM) technique to select the optimum.
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Table 1. List of chromatographic response functions

Equation and description Reference

CRF ¼
P

i¼1
L Riþ Lw1 2 w2j TA 2 TL j2 w3(T1 2 T0) (14) [34]

Ri – resolution between ith and the (iþ 1)th peaks

L – the number of peak appearing in the chromatograhm

TA – maximum acceptable time of chromatographic run

TL – retention time of the final peak

T1 – retention time of the final peak

T0 – minimum retention time of the first peak

wn – weighting parameters selected by analyst

CRS ¼ f
P

i¼1
n21 [(Ri,iþ1 2 Ropt)

2/(Ri,iþ1 2 Rmin)2 Ri,iþ1]þP
i¼1
n21 (R2

i,iþ1/(n 2 1)R2
av)g (tf/n) (15)

[35]

Rav – average resolution of all pairs of peak

Ropt – desired optimum resolution

n – number of peaks

CEF ¼ (f
P

i¼1
n21(1 2 eaðRopt�RiÞ)2

g þ 1) (1þ (tf/tmax)) (16) [36]

tmax – maximum acceptable retention time

tf – elution time of the final peak

a – slope adjustment factor

CRF ¼ (tR,n/tR,criþ
P

i=j e�Rs;ij=Rs;crit (17) [37]

tR,n – retention time of the last eluting peak

tR,crit – user–selected time–cost weighting factor

Rs,crit is a user selected resolution target value

Rs,ij is a resolution between two Gaussian peaks I and j

CRITA(i,j) ¼ [((tj/ti)predicted/(tj/ti)required)] 2 1 (18) [38]

ti, tj – retention time of two adjacent pair of peaks

Cr ¼ 10(aav/tR)f (19) [39]

aav – average selectivity

tR – retention time of the first eluting peak

f – factor taking into account number of separated peaks

COF ¼
P

i¼1
n Ailn(Ri/Rid)þ B(tm 2 tn) (20) [40]

Rid – desired resolution

tm – desired maximum analysis time

tn – time of the last eluted peak

Ai and B – weighting factors

Ic ¼
P

p(kpp/n) log2(n/p) (21) [41–43]

n – number of components

p – number of multiplets

kp – separated multiplets of peaks
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Starting from the principle of Taguchi’s closeness-to target (nominal—

the best) signal-to-noise ratio,[50,51] some criteria for MCDM were created:[52]

CR1 ¼ n
ðfJÞsPn

i¼1 jðDðfJiÞsÞ=Dxj

� �
ð22Þ

CR2 ¼
1

2
ð fjÞs þ

1

2
1�

ð
Pn

i¼1 jDðfJiÞsjÞ=Dx

n

� �� �
ð23Þ

CR3 ¼
1

n

Xn

i¼1

ðfJÞs

1þ jDðfJiÞs=Dxj

� � !
ð24Þ

CR4 ¼
ðfJÞsQn

i¼1ð1þ jDðfJiÞs=DxjÞ

� �
ð25Þ

where f represents a function relating the response to be optimized (y) as a

function of variation (x). The criteria differ in the way the scaled response

for a certain point J, (fJ)s, are combined. It was demonstrated that optimal con-

ditions selected through these criteria are Parento optimal[53] or agreed with

Derringer’s desirability function.[54,55]

OPTIMIZATION SOFTWARE PACKAGES

The software packages that include both isocratic and gradient optimization

facilities for liquid chromatography, such as DryLab,[56,57] Preopt-W,[58]

and Osiris,[38] are currently available. A new software package, Virtual

Column 2, is described for the simulation and optimization of the separation

of inorganic anions by ion chromatography.[59] This software uses a limited

amount of experimental retention data acquired according to a correct exper-

imental design to predict retention times for analytes over a designated search

area of eluent compositions. The experimental retention data are used to solve

a new retention model, called the linear solvent strength model, empirical

approach (LSSM-EA), which then enables prediction of retention times for

all eluent compositions in the search area. Virtual Column 2 has been

evaluated extensively and is shown to give predicted retention times that, in

most cases, agree with experimentally determined data to within 5%.

PEAK SHAPE MODELING

When dealing with a complex separation problem, besides retention time of

the particular component, the peak shape becomes a very important factor

in the global optimization process. The search of models that describe

correctly the chromatographic peaks has been pursued intensively. Several

Gaussian modified functions are used routinely to model peaks with
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different asymmetry degrees.[60,61] In ideal conditions, a chromatographic

peak is described by:

hðtÞ ¼ H0e�ð1=2Þððt�tRÞ=sÞ
2

ð26Þ

where H0 is the height at the maximum, tR the retention time, and s the

standard deviation that measures the peak width. Peaks are, however, often

skewed due to the complex interactions that are established between solute

and stationary phase, and to extra-column processes. Several models based

on the Gaussian function have been proposed to describe these deviations.

Haarhoff and van der Linde,[62] Fraser and Suzuki,[63] Buys and Clerk,[64]

Chesler and Cram,[65] and Dondi et al.[66] developed some of the earliest

models. The exponentially modified Gaussian model (EMG) has been used

extensively.[67 – 70] Other, more recent, models are the generalized exponen-

tial,[71] log-normal,[72] exponential bi-Gaussian,[73] coupled leading and

trailing edge,[74] Gaussian–Lorentzian,[75] two-Gaussians,[76] exponential

Gaussian hybrid,[77] and the Pap–Pápai function.[78]

The polynomial modified Gaussian (PMG) model was proposed to

improve the simulation and prediction of chromatograms[79] needed for a

reliable optimization of the resolution.[80] In this model, the deviations from

ideality are interpreted as a change in the standard deviation as a function

of time, according to a polynomial function:

hðtÞ ¼ H0 e�ð1=2Þððt�tRÞ=s0þs1ðt�tRÞþs2ðt�tRÞ
2
þ���Þ

2

ð27Þ

This approach has demonstrated great flexibility in the simulation of strongly

tailed and fronted peaks. It has also been applied to the deconvolution of

partially overlapped peaks, in binary and ternary mixtures, with good

results,[61,79] improving the performance of the EMG model, which is often

taken as reference in modeling and resolution reports.

CONCLUSIONS

Optimization in ion chromatography is still an important demand from

analysts who look for desired resolution or desired selectivity with a limited

number of experiments in a minimum time. Computer assisted procedures

are reliable and well established methods in ion chromatography. They

provide valuable tools for studying the influence of parameters and determin-

ing which are those of primary importance, followed by finding optimal con-

ditions in global optimization processes. Each of the optimization methods has

advantages and disadvantages, and none address all users’ needs. By using the

different optimization methods in an integrated manner, it is, however,

possible both to speed method development, by reducing unnecessary experi-

mentation, and to overcome many shortcomings of each method, because of

the different approaches.
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T. Bolanča and Š. Cerjan-Stefanović802
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opment of an inorganic cations retention model in ion chromatography by means

of artificial neural networks with different two phase training algorithms.

J. Chromaotogr. A 2005, 1085, 74–85.
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D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
4
7
 
2
3
 
J
a
n
u
a
r
y
 
2
0
1
1


